氧化磷酸化

取自 食品百科全书

(修订版本间差异)
跳转到: 导航, 搜索
09:05 2008年9月2日的修订版本 (编辑)
Foodbk (Talk | 贡献)

←上一个
09:06 2008年9月2日的修订版本 (编辑) (undo)
Foodbk (Talk | 贡献)

下一个→
第20行: 第20行:
胞液中NADH的氧化 胞液中NADH的氧化
- 糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。+
- 1、α-磷酸甘油穿梭作用+糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。
- 这种作用主要存在于脑、骨骼肌中,载体是α-磷酸甘油。+
- 胞液中的NADH在α-磷酸甘油脱氢酶的催化下,使磷酸二羟丙酮还原为α-磷酸甘油,后者通过线粒体内膜,并被内膜上的α-磷酸甘油脱氢酶(以FAD为辅基)催化重新生成磷酸二羟丙酮和FADH2,后者进入琥珀酸氧化呼吸链。葡萄糖在这些组织中彻底氧化生成的ATP比其他组织要少,1摩尔G→36摩尔ATP。+1、α-磷酸甘油穿梭作用
 +
 +这种作用主要存在于脑、骨骼肌中,载体是α-磷酸甘油。
 +
 +胞液中的NADH在α-磷酸甘油脱氢酶的催化下,使磷酸二羟丙酮还原为α-磷酸甘油,后者通过线粒体内膜,并被内膜上的α-磷酸甘油脱氢酶(以FAD为辅基)催化重新生成磷酸二羟丙酮和FADH2,后者进入琥珀酸氧化呼吸链。葡萄糖在这些组织中彻底氧化生成的ATP比其他组织要少,1摩尔G→36摩尔ATP。
 + 
2、苹果酸-天冬氨酸穿梭作用 2、苹果酸-天冬氨酸穿梭作用
主要存在肝和心肌中。1摩尔G→38摩尔ATP 主要存在肝和心肌中。1摩尔G→38摩尔ATP
第29行: 第34行:
氧化磷酸化偶联机制 氧化磷酸化偶联机制
 +
1、化学渗透假说(chemiosmotic hypothesis) 1、化学渗透假说(chemiosmotic hypothesis)
- 1961年,英国学者Peter Mitchell提出化学渗透假说(1978年获诺贝尔化学奖),说明了电子传递释出的能量用于形成一种跨线粒体内膜的质子梯度(H+梯度),这种梯度驱动ATP的合成。这一过程概括如下:+
 +1961年,英国学者Peter Mitchell提出化学渗透假说(1978年获诺贝尔化学奖),说明了电子传递释出的能量用于形成一种跨线粒体内膜的质子梯度(H+梯度),这种梯度驱动ATP的合成。这一过程概括如下:
2、NADH的氧化,其电子沿呼吸链的传递,造成H+ 被3个H+ 泵,即NADH脱氢酶、细胞色素bc1复合体和细胞色素氧化酶从线粒体基质跨过内膜泵入膜间隙。 2、NADH的氧化,其电子沿呼吸链的传递,造成H+ 被3个H+ 泵,即NADH脱氢酶、细胞色素bc1复合体和细胞色素氧化酶从线粒体基质跨过内膜泵入膜间隙。
- 2H+ 泵出,在膜间隙产生一高的H+ 浓度,这不仅使膜外侧的pH较内侧低(形成pH梯度),而且使原有的外正内负的跨膜电位增高,由此形成的电化学质子梯度成为质子动力,是H+ 的化学梯度和膜电势的总和。3H+ 通过ATP合酶流回到线粒体基质,质子动力驱动ATP合酶合成ATP。 +
 +2H+ 泵出,在膜间隙产生一高的H+ 浓度,这不仅使膜外侧的pH较内侧低(形成pH梯度),而且使原有的外正内负的跨膜电位增高,由此形成的电化学质子梯度成为质子动力,是H+ 的化学梯度和膜电势的总和。3H+ 通过ATP合酶流回到线粒体基质,质子动力驱动ATP合酶合成ATP。
 + 
3、ATP合酶 3、ATP合酶
- ATP合酶由两部分组成(Fo-F1),球状的头部F1突向基质液,水溶性。亚单位Fo埋在内膜的底部,是疏水性蛋白,构成H+ 通道。在生理条件下,H+ 只能从膜外侧流向基质,通道的开关受柄部某种蛋白质的调节。+
 +ATP合酶由两部分组成(Fo-F1),球状的头部F1突向基质液,水溶性。亚单位Fo埋在内膜的底部,是疏水性蛋白,构成H+ 通道。在生理条件下,H+ 只能从膜外侧流向基质,通道的开关受柄部某种蛋白质的调节。
影响氧化磷酸化的因素 影响氧化磷酸化的因素
 +
1、抑制剂 1、抑制剂
- 能阻断呼吸链某一部位电子传递的物质称为呼吸链抑制剂。+
 +能阻断呼吸链某一部位电子传递的物质称为呼吸链抑制剂。
鱼藤酮、安密妥在NADH脱氢酶处抑制电子传递,阻断NADH的氧化,但FADH2的氧化仍然能进行。 鱼藤酮、安密妥在NADH脱氢酶处抑制电子传递,阻断NADH的氧化,但FADH2的氧化仍然能进行。
- 抗霉素A抑制电子在细胞色素bc1复合体处的传递。+
- 氰化物、CO、叠氮化物(N3-)抑制细胞色素氧化酶。+抗霉素A抑制电子在细胞色素bc1复合体处的传递。
- 对电子传递及ADP磷酸化均有抑制作用的物质称氧化磷酸化抑制剂,如寡霉素。+
 +氰化物、CO、叠氮化物(N3-)抑制细胞色素氧化酶。
 +
 +对电子传递及ADP磷酸化均有抑制作用的物质称氧化磷酸化抑制剂,如寡霉素。
 + 
2、解偶联剂 2、解偶联剂
- 2,4-二硝基苯酚(DNP)和颉氨霉素可解除氧化和磷酸化的偶联过程,使电子传递照常进行而不生成ATP。DNP的作用机制是作为H+的载体将其运回线粒体内部,破坏质子梯度的形成。由电子传递产生的能量以热被释出。+
 +2,4-二硝基苯酚(DNP)和颉氨霉素可解除氧化和磷酸化的偶联过程,使电子传递照常进行而不生成ATP。DNP的作用机制是作为H+的载体将其运回线粒体内部,破坏质子梯度的形成。由电子传递产生的能量以热被释出。
 + 
3、ADP的调节作用 3、ADP的调节作用
正常机体氧化磷酸化的速率主要受ADP水平的调节,只有ADP被磷酸化形成ATP,电子才通过呼吸链流向氧。如果提供ADP,随着ADP的浓度下降,电子传递进行,ATP在合成,但电子传递随ADP浓度的下降而减缓。此过程称为呼吸控制,这保证电子流只在需要ATP合成时发生。 正常机体氧化磷酸化的速率主要受ADP水平的调节,只有ADP被磷酸化形成ATP,电子才通过呼吸链流向氧。如果提供ADP,随着ADP的浓度下降,电子传递进行,ATP在合成,但电子传递随ADP浓度的下降而减缓。此过程称为呼吸控制,这保证电子流只在需要ATP合成时发生。

09:06 2008年9月2日的修订版本

氧化磷酸化(oxidative phosphorylation)

是指在生物氧化中伴随着ATP生成的作用。有代谢物连接的磷酸化和呼吸链连接的磷酸化两种类型。即ATP生成方式有两种。一种是代谢物脱氢后,分子内部能量重新分布,使无机磷酸酯化先形成一个高能中间代谢物,促使ADP变成ATP。这称为底物水平磷酸化。如3-磷酸甘油醛氧化生成1,3-二磷酸甘油酸,再降解为3-磷酸甘油酸。另一种是在呼吸链电子传递过程中偶联ATP的生成。生物体内95%的ATP来自这种方式。


氧化磷酸化是细胞中重要的生化过程,是细胞呼吸的最终代谢途径,位於糖酵解和三羧酸循环之后,是产生“能量通货”ATP的主要步骤。这一过程可看作电子传递过程中偶联ADP磷酸化,生成ATP。

氧化磷酸化发生在原核生物的细胞膜,或者真核生物的线粒体内膜上。过程由两部分组成:电子传递链和ATP合酶。前者氧化由糖酵解和三羧酸循环产生的NADH和FADH2,同时将质子泵出细胞膜或线粒体内膜,产生质子梯度;後者,也称为复合体V,利用质子梯度导致的质子内流将ADP和磷酸合成爲ATP,从而将氢载体氧化产生的能量以ATP的形式保存。

是指在生物氧化中伴随着ATP生成的作用。伴随生物氧化而进行的腺苷三磷酸(ATP)的生成作用。糖酵解和三羧酸循环产生的还原型辅酶I(NADH2)和还原型黄素蛋白(FADH2),不能被直接氧化。它们中的氢,包括氢离子(H+)和电子(e -),都要通过一系列电子传递体(包括细胞色素b、c、a、a3等)的传递,最终才能传递给氧。只有氧活化后,才能和氢结合生成水,这些电子传递体在传递电子的过程中,它们的能量水平将逐步下降。所释放的能量一部分推动着磷酸化作用,使ADP和无机磷酸结合生成ATP。由于氧化作用和磷酸化作用同时进行,故名氧化磷酸化。由NADH2氧化到生成水的过程中,发生三次磷酸化,并生成3分子ATP。由FADH2氧化到生成水的过程中,只发生二次磷酸化,只生成2分子ATP。


有代谢物连接的磷酸化和呼吸链连接的磷酸化两种类型。即ATP生成方式有两种。一种是代谢物脱氢后,分子内部能量重新分布,使无机磷酸酯化先形成一个高能中间代谢物,促使ADP变成ATP。这称为底物水平磷酸化。如3-磷酸甘油醛氧化生成1,3-二磷酸甘油酸,再降解为3-磷酸甘油酸。另一种是在呼吸链电子传递过程中偶联ATP的生成。生物体内95%的ATP来自这种方式。

偶联部位 1、根据实验测定氧的消耗量与ATP的生成数之间的关系以及计算氧化还原反应中ΔGO'和电极电位差ΔE的关系可以证明。 2、P/O比值是指代谢物氧化时每消耗1摩尔氧原子所消耗的无机磷原子的摩尔数,即合成ATP的摩尔数。实验表明, NADH在呼吸链被氧化为水时的P/O值约等于3,即生成3分子ATP;FADH2氧化的P/O值约等于2,即生成2分子ATP。 3、氧-还电势沿呼吸链的变化是每一步自由能变化的量度。根据ΔGO'= - nFΔE O'(n是电子传递数,F是法拉第常数),从NADH到Q段电位差约0.36V,从Q到Cytc为0.21V,从aa3到分子氧为0.53V,计算出相应的ΔGO'分别为69.5、40.5、102.3kJ/mol。于是普遍认为下述3个部位就是电子传递链中产生ATP的部位。 NADH→NADH脱氢酶→‖Q → 细胞色素bc1复合体→‖Cytc →aa3→‖O2

胞液中NADH的氧化

糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。

1、α-磷酸甘油穿梭作用

这种作用主要存在于脑、骨骼肌中,载体是α-磷酸甘油。

胞液中的NADH在α-磷酸甘油脱氢酶的催化下,使磷酸二羟丙酮还原为α-磷酸甘油,后者通过线粒体内膜,并被内膜上的α-磷酸甘油脱氢酶(以FAD为辅基)催化重新生成磷酸二羟丙酮和FADH2,后者进入琥珀酸氧化呼吸链。葡萄糖在这些组织中彻底氧化生成的ATP比其他组织要少,1摩尔G→36摩尔ATP。

2、苹果酸-天冬氨酸穿梭作用 主要存在肝和心肌中。1摩尔G→38摩尔ATP 胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后者再经酸性氨基酸载体转运出线粒体转变成草酰乙酸。

氧化磷酸化偶联机制

1、化学渗透假说(chemiosmotic hypothesis)

1961年,英国学者Peter Mitchell提出化学渗透假说(1978年获诺贝尔化学奖),说明了电子传递释出的能量用于形成一种跨线粒体内膜的质子梯度(H+梯度),这种梯度驱动ATP的合成。这一过程概括如下: 2、NADH的氧化,其电子沿呼吸链的传递,造成H+ 被3个H+ 泵,即NADH脱氢酶、细胞色素bc1复合体和细胞色素氧化酶从线粒体基质跨过内膜泵入膜间隙。

2H+ 泵出,在膜间隙产生一高的H+ 浓度,这不仅使膜外侧的pH较内侧低(形成pH梯度),而且使原有的外正内负的跨膜电位增高,由此形成的电化学质子梯度成为质子动力,是H+ 的化学梯度和膜电势的总和。3H+ 通过ATP合酶流回到线粒体基质,质子动力驱动ATP合酶合成ATP。

3、ATP合酶

ATP合酶由两部分组成(Fo-F1),球状的头部F1突向基质液,水溶性。亚单位Fo埋在内膜的底部,是疏水性蛋白,构成H+ 通道。在生理条件下,H+ 只能从膜外侧流向基质,通道的开关受柄部某种蛋白质的调节。

影响氧化磷酸化的因素

1、抑制剂

能阻断呼吸链某一部位电子传递的物质称为呼吸链抑制剂。 鱼藤酮、安密妥在NADH脱氢酶处抑制电子传递,阻断NADH的氧化,但FADH2的氧化仍然能进行。

抗霉素A抑制电子在细胞色素bc1复合体处的传递。

氰化物、CO、叠氮化物(N3-)抑制细胞色素氧化酶。

对电子传递及ADP磷酸化均有抑制作用的物质称氧化磷酸化抑制剂,如寡霉素。

2、解偶联剂

2,4-二硝基苯酚(DNP)和颉氨霉素可解除氧化和磷酸化的偶联过程,使电子传递照常进行而不生成ATP。DNP的作用机制是作为H+的载体将其运回线粒体内部,破坏质子梯度的形成。由电子传递产生的能量以热被释出。

3、ADP的调节作用 正常机体氧化磷酸化的速率主要受ADP水平的调节,只有ADP被磷酸化形成ATP,电子才通过呼吸链流向氧。如果提供ADP,随着ADP的浓度下降,电子传递进行,ATP在合成,但电子传递随ADP浓度的下降而减缓。此过程称为呼吸控制,这保证电子流只在需要ATP合成时发生。

3、产生ATP的计算 到目前爲止,电子传递链中一分子NADH或FADH2被氧化所泵出的质子数,以及ATP合成酶合成一个ATP所需的质子数仍然都是未知,而半个氧分子被还原(等同於一个NADH或FADH2被氧化)时所产生的ATP称作P/O值。对此,已有很多实验试图计算这两个值,但仍未取得一致意见。对於电子传递链,目前最公认的结论是一个NADH被氧化泵出10个质子,一个FADH2被氧化泵出6个。而合成一分子ATP大约需要4个质子内流。则对於NADH,P/O值约爲2.5,而FADH2的P/O值约爲1.5。然而也有的教科书认爲P/O值分别爲3和2。

个人工具

鲁ICP备14027462号-6

鲁公网安备 37060202000129号